Search results for "Nemaline myopathy"
showing 10 items of 19 documents
Genotype-phenotype correlations in nemaline myopathy caused by mutations in the genes for nebulin and skeletal muscle alpha-actin.
2003
We present comparisons of the clinical pictures in a series of 60 patients with nemaline myopathy in whom mutations had been identified in the genes for nebulin or skeletal muscle alpha-actin. In the patients with nebulin mutations, the typical form of nemaline myopathy predominated, while severe, mild or intermediate forms were less frequent. Autosomal recessive inheritance had been verified or appeared likely in all nebulin cases. In the patients with actin mutations, the severe form of nemaline myopathy was the most common, but some had the mild or typical form, and a few showed other associated features such as intranuclear rods or actin accumulation. Most cases were sporadic, but in ad…
Mutations in the skeletal muscle alpha-actin gene in patients with actin myopathy and nemaline myopathy
1999
Muscle contraction results from the force generated between the thin filament protein actin and the thick filament protein myosin, which causes the thick and thin muscle filaments to slide past each other. There are skeletal muscle, cardiac muscle, smooth muscle and non-muscle isoforms of both actin and myosin. Inherited diseases in humans have been associated with defects in cardiac actin (dilated cardiomyopathy and hypertrophic cardiomyopathy), cardiac myosin (hypertrophic cardiomyopathy) and non-muscle myosin (deafness). Here we report that mutations in the human skeletal muscle alpha-actin gene (ACTA1) are associated with two different muscle diseases, 'congenital myopathy with excess o…
Nemaline myopathy and heart failure: role of ivabradine; a case report
2015
Background Nemaline myopathy (NM) is a rare congenital myopathy characterized by muscle weakness, hypotonia and the presence in muscle fibers of inclusions known as nemaline bodies and a wide spectrum of clinical phenotypes, ranging from severe forms with neonatal onset to asymptomatic forms. The adult-onset form is heterogeneous in terms of clinical presentation and disease progression. Cardiac involvement occurs in the minority of cases and little is known about medical management in this subgroup of NM patients. We report a rare case of heart failure (HF) in a patient with adult-onset NM in whom ivabradine proved to be able to dramatically improve the clinical picture. Case presentation …
Fetal akinesia caused by a novel actin filament aggregate myopathy skeletal muscle actin gene (ACTA1) mutation.
2010
We report a female newborn, diagnosed with fetal akinesia in utero, who died one hour after birth. Post-mortem muscle biopsy demonstrated actin-filament myopathy based on immunolabelling for sarcomeric actin, and large areas of filaments, without rod formation, ultrastructurally. Analysis of DNA extracted from the muscle disclosed a novel de novo heterozygous c.44G>A, GGC>GAC, 'p.Gly15Asp' mutation in the ACTA1 gene. Analysis of the location of the mutated amino-acid in the actin molecule suggests the mutation most likely causes abnormal nucleotide binding, and consequent pathological actin polymerization. This case emphasizes the association of fetal akinesia with actin-filament myopathy.
Mutations in the β-tropomyosin (TPM2) gene – a rare cause of nemaline myopathy
2002
Nemaline myopathy is a clinically and genetically heterogeneous muscle disorder. In the nebulin gene we have detected a number of autosomal recessive mutations. Both autosomal dominant and recessive mutations have been detected in the genes for alpha -actin and alpha -tropomyosin 3. A recessive mutation causing nemaline myopathy among the Old Order Amish has recently been identified in the gene for slow skeletal muscle troponin T. As linkage studies had shown that at least one further gene exists for nemaline myopathy, we investigated another tropomyosin gene expressed in skeletal muscle, the beta -tropomyosin 2 gene. Screening 66 unrelated patients, using single strand conformation polymor…
Gene-Related Protein Surplus Myopathies
2000
Numerous muscular dystrophies, such as dystrophinopathies, sarcoglycanopathies, and emerino- and laminopathies, are marked by the absence or reduction of mutant transsarcolemmal or nuclear proteins. In addition to these recently identified minus-proteinopathies, there are a growing number of plus-proteinopathies among neuromuscular disorders marked by a surplus or excess of endogenous proteins within muscle fibers of different, i.e., nontranssarcolemmal and nonnuclear types. These proteins are often filamentous; for example, desmin and actin accrue in respective desmin-related myopathies, among which are entities marked by mutant desmin, true desminopathies, and actinopathy, the latter ofte…
Speech treatment in nemaline myopathy: A single-subject experimental study
2020
Abstract Purpose The objective of this work was to verify the efficacy of a treatment based on myofunctional therapy techniques which aimed to improve the tongue strength, precision, and speed of a ten-year-old girl with nemaline myopathy (NM) and the repercussions of this therapy on her speech intelligibility. NM is a rare congenital muscle disorder that causes extreme muscle weakness, especially in the face and neck, as well as severe dysarthria and dysphagia, although this does not affect the nervous system or cognitive development. Method This was a single-subject experimental study which used an interrupted pre- and post-treatment time-series design, and which applied autoregressive in…
The genomic and clinical landscape of fetal akinesia
2020
International audience; Fetal akinesia has multiple clinical subtypes with over 160 gene associations, but the genetic etiology is not yet completely understood.Methods: In this study, 51 patients from 47 unrelated families were analyzed using next-generation sequencing (NGS) techniques aiming to decipher the genomic landscape of fetal akinesia (FA).Results: We have identified likely pathogenic gene variants in 37 cases and report 41 novel variants. Additionally, we report putative pathogenic variants in eight cases including nine novel variants. Our work identified 14 novel disease-gene associations for fetal akinesia: ADSSL1, ASAH1, ASPM, ATP2B3, EARS2, FBLN1, PRG4, PRICKLE1, ROR2, SETBP1…
Actin-related myopathy without any missense mutation in the ACTA1 gene.
2004
Actinopathies are defined by missense mutations in the ACTA1 gene coding for sarcomeric actin, of which some 70 families have, so far, been identified. Often, but not always, muscle fibers carry large patches of actin filaments. Many such patients also have nemaline myopathy, qualifying actinopathies as a subgroup of nemaline myopathies. This article concerns a then newborn, now 21/2-year-old boy, the first and single child of nonconsanguineous parents, who was born floppy, requiring immediate postnatal assisted ventilation. A quadriceps muscle biopsy revealed large patches of thin myofilaments reacting at light and electron microscopic levels with antibodies against actin but only a few s…
Intranuclear nemaline rod myopathy
2006
The clinical, pathologic, and genetic findings of a boy with intranuclear nemaline rod myopathy are described. Serial muscle biopsies revealed myocyte nuclei containing inclusions that were immunoreactive for α-actinin and increased with age. Genetic analysis revealed a Val163Leu ACTA1 mutation previously associated with nemaline rod myopathy. Although initially delayed, he has reached all milestones and remains stable. These findings suggest intranuclear rods may increase with time and do not necessarily imply a poor prognosis. Muscle Nerve, 2006